Reshaping Business With Artificial Intelligence

Reshaping Business With Artificial Intelligence | DigiTrans

Disruption from artificial intelligence (AI) is here, but many company leaders aren’t sure what to expect from AI or how it fits into their business model. Yet with change coming at breakneck speed, the time to identify your company’s AI strategy is now. MIT Sloan Management Review has partnered with The Boston Consulting Group to provide baseline information on the strategies used by companies leading in AI, the prospects for its growth, and the steps executives need to take to develop a strategy for their business.

EXECUTIVE SUMMARY

Expectations for artificial intelligence (AI) are sky-high, but what are businesses actually doing now? The goal of this report is to present a realistic baseline that allows companies to compare their AI ambitions and efforts. Building on data rather than conjecture, the research is based on a global survey of more than 3,000 executives, managers, and analysts across industries and in-depth interviews with more than 30 technology experts and executives. (See “About the Research.”)

The gap between ambition and execution is large at most companies. Three-quarters of executives believe AI will enable their companies to move into new businesses. Almost 85% believe AI will allow their companies to obtain or sustain a competitive advantage. But only about one in five companies has incorporated AI in some offerings or processes. Only one in 20 companies has extensively incorporated AI in offerings or processes. Less than 39% of all companies have an AI strategy in place. The largest companies — those with at least 100,000 employees — are the most likely to have an AI strategy, but only half have one.

Our research reveals large gaps between today’s leaders — companies that already understand and have adopted AI — and laggards. One sizeable difference is their approach to data. AI algorithms are not natively “intelligent.” They learn inductively by analyzing data. While most leaders are investing in AI talent and have built robust information infrastructures, other companies lack analytics expertise and easy access to their data. Our research surfaced several misunderstandings about the resources needed to train AI. The leaders not only have a much deeper appreciation about what’s required to produce AI than laggards, they are also more likely to have senior leadership support and have developed a business case for AI initiatives.

AI has implications for management and organizational practices. While there are already multiple models for organizing for AI, organizational flexibility is a centerpiece of all of them. For large companies, the culture change required to implement AI will be daunting, according to several executives with whom we spoke.

Our survey respondents and interviewees are more sanguine than conventional wisdom on job loss. Most managers we surveyed do not expect that AI will lead to staff reductions at their organization within the next five years. Rather, they hope that AI will take over some of their more boring and unpleasant current tasks.

AI AT WORK

As Airbus started to ramp up production of its new A350 aircraft, the company faced a multibillion-euro challenge. In the words of Matthew Evans, vice president of digital transformation at the Toulouse, France-based company, “Our plan was to increase the production rate of that aircraft faster than ever before. To do that, we needed to address issues like responding quickly to disruptions in the factory. Because they will happen.”

Airbus turned to artificial intelligence. It combined data from past production programs, continuing input from the A350 program, fuzzy matching, and a self-learning algorithm to identify patterns in production problems. In some areas, the system matches about 70% of the production disruptions to solutions used previously — in near real time. Evans describes how AI enables the entire Airbus production line to learn quickly and meet its business challenge:

What the system does is essentially look at a problem description, taking in all of the contextual information, and then it matches that with the description of the issue itself and gives the person on the floor an immediate recommendation. The problem might be new to them, but in fact, we’ve seen something very similar in the production line the weekend before, or on a different shift, or on a different section of the line. This has allowed us to shorten the amount of time it takes us to deal with disruptions by more than a third.

AI empowered Airbus to solve a business problem more quickly and efficiently than prior approaches (such as root-cause analysis based on manual analysis of hundreds or thousands of cases).

Just as it is enabling speed and efficiency at Airbus, AI capabilities are leading directly to new, better processes and results at other pioneering organizations. Other large companies, such as BP, Infosys, Wells Fargo, and Ping An Insurance, are already solving important business problems with AI. Many others, however, have yet to get started.

Source From: MITSloan Management Review

Top